Article 5: Basic Particles in Stationary Energy Theory, Including the Math
This is a supplementary article. To go to the main introductory article about Stationary Energy Theory, and its links to other supplementary articles, please click here.
In the energy releasing collisions between Basic Particles (BPs) and Backward Through Time Particles (BTTPs), the mass of a single
colliding particle would have to be small enough that the energy in the least
energetic possible photon of electromagnetic radiation would correspond to its
mass. Then the simultaneous collisions of multiple particles (possibly in clusters)
would lead to the release of higher energy photons. If we call the energy in
the least energetic possible photon E_{min}, then the mass of this
particle, the “Basic Particle” (BP) would be:
m_{bp} = E_{min}/c˛ . . . . . . . . (12)
The least energetic electromagnetic radiation (EMR) known
appears to be ultra low frequency radio waves with a frequency of about 1 mHz
(0.001 Hz). The PlanckEinstein Equation, E = hf, gives the energy of photons
emitted at a particular frequency, “f,” where “h” is Planck’s Constant (6.62 x
10^{34} Joules.s). For this least energetic photon, with a frequency
of 0.001 Hz:
E_{min} = hf = 6.62 x 10^{34 }x 0.001 =
6.62 x 10^{37} Joules . . . (13)
Substituting this in (12) we get the mass of a basic
particle:
m_{bp} = E_{min}/c˛ = 6.62 x 10^{37}
J/(3 x 10^{8} m/s)^{2} = 6.62 x 10^{37}/ (9 x 10^{16})
= 0.7 x 10^{53} kg
So, to the nearest order of magnitude the mass of a “basic
particle” is:
m_{bp} = 10^{53} kg . . . . . . . (14)
If EMR with a frequency less than 0.001Hz is discovered,
this mass would have to be lowered further to take account of it, but it is a
useful figure to work with.
Since the mass of an electron is about 10^{30}
kg (9.1 x 10^{31} kg), this means an electron would be made up of
about 10^{23} “basic particles.”
These “basic particles” (BPs) would presumably be the smallest
subatomic particles out of which all other particles are made. Since they would
be the basic building blocks of matter, this theory proposes that they have electromagnetic attractive forces between them when they are traveling forward in time together that would, when they are combined in various ways to form the various fundamental particles of Nature,
explain the strong and weak nuclear forces and electromagnetic forces of Quantum Theory. I also propose that when they are traveling backward through time (when they are BTTPs), these particles repel the same kind of particles going forward in time (BPs), as they approach each other and pass.
Because of this repulsion, it would only be particles
approaching each other on a direct collision course that would actually collide
and release their mass as energy in the form of electromagnetic radiation
(EMR), as particles even slightly off to one side would repel each other and
pass clear of each other. Since excited atoms produce EMR equally well wherever
they are in space, it is clear that these particles traveling backward through
time must either be aligned by some common causality with matter in our
Universe, or be present in close to an equal density everywhere in their
domain.
This explains how photons of EMR are created at a source,
and carry away an amount of mass from the source equal to E/c^{2}.
Light waves in the visible spectrum have a frequency of about 10^{15}
Hz, which would require about 10^{18} BPs within an electron to switch
quantum states to the Universal Energy Field to become one photon of light.
This is just one particle in 100,000 within an electron, which would reduce the
mass of the electron by 0.001%.
This theory thus predicts that electrons in higher (more energetic) orbitals would weigh slightly more than those in lower orbitals, in proportion to the energy of the photon emitted when the electron moves between the orbitals. This tiny weight loss would presumably not adversely affect the function of the electron, and may even be tied in with its function. (For a detailed explanation of how the interaction of Basic Particles and BTTPs is in accord with Quantum Theory, please see Appendix A.)
In opaque or semiopaque media, light photons are absorbed and reemitted by atoms as described by Quantum Theory. The reemitted photon is not usually of the same energy or propagated in the same direction. This theory proposes that the apparent reduction of the speed of light in transparent media, such as air or glass, is due to photons being effectively “stationary” for a small amount of time as they are being absorbed and reemitted by atoms in the media. This would allow the photons, while they are moving, to be moving at exactly the speed of light. In the case of transparent media, however, the process of absorption and reemission would have to be such that most of the reemitted photons would be of the same energy and approximately the same direction of propagation as the absorbed photons. This absorption and reemission is required by this theory because, under it, matter/energy must be in one or other of its quantum states (stationary or moving at the speed of light) and not somewhere inbetween. Structures of matter are, according this theory, transparent to particular frequencies when the energy of those frequencies correspond to energy transitions within electrons that cause absorbed photons to be rapidly reemitted in close to the same direction and with the same frequency. Consequently, this theory predicts that this kind of very rapid absorption and reemission takes place in transparent media, and that, with the right experiment, it may be possible to verify that it is happening.
Press your browser's "back" button (<) to return to where you were in the main article.
To go to the beginning of the main introductory article, please click here.
To go to the next article in the series, Article 6, please click here.
